### **Regulations Compliance Report**



Fail

**OK** 

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.4.16 Printed on 25 March 2019 at 14:46:50

Project Information:

Assessed By: Aymon Winter (STRO014511) **Building Type:** Flat

Total Floor Area: 61.7m<sup>2</sup>

Dwelling Details:

Site Reference:

**NEW DWELLING DESIGN STAGE** 

49-51 Beulah Hill Plot Reference: 01-19-73120 A-3-09 PL1

Sada Unit Ref: A3-A21 A-3-09, 49-51 Beulah Hill Address:

Client Details:

Name: Sada Architecture

Address:

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Mains gas

Fuel factor: 1.00 (mains gas)

Target Carbon Dioxide Emission Rate (TER) 17.89 kg/m<sup>2</sup>

Dwelling Carbon Dioxide Emission Rate (DER) 12.95 kg/m<sup>2</sup> **OK** 

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 44.1 kWh/m<sup>2</sup>

Dwelling Fabric Energy Efficiency (DFEE) 46.4 kWh/m<sup>2</sup>

Excess energy =  $2.27 \text{ kg/m}^2 (05.1 \%)$ 

2 Fabric U-values

**Element Average Highest** External wall 0.16 (max. 0.30) 0.23 (max. 0.70) OK Party wall 0.00 (max. 0.20) OK Floor (no floor) Roof (no roof) Openings 1.40 (max. 2.00) 1.40 (max. 3.30) OK

2a Thermal bridging

Thermal bridging calculated from linear thermal transmittances for each junction

3 Air permeability

Air permeability at 50 pascals 5.00 (design value)

Maximum 10.0

4 Heating efficiency

Database: (rev 440, product index 017558): Main Heating system:

Boiler systems with radiators or underfloor heating - mains gas

Brand name: Worcester Model: Greenstar

Model qualifier: 34CDi Classic ErP

(Combi)

Efficiency 89.1 % SEDBUK2009

Minimum 88.0 % OK

# **Regulations Compliance Report**



Secondary heating system: None

| Cylinder insulation               |                            |                             |    |
|-----------------------------------|----------------------------|-----------------------------|----|
| Hot water Storage:                | No cylinder                |                             |    |
| Controls                          |                            |                             |    |
| Space heating controls            | Programmer, room therm     | ostat and TRVs              | ОК |
| Hot water controls:               | No cylinder<br>No cylinder |                             |    |
| Boiler interlock:                 | Yes                        |                             | ОК |
| Low energy lights                 |                            |                             |    |
| Percentage of fixed lights with I | ow-energy fittings         | 100.0%                      |    |
| Minimum                           |                            | 75.0%                       | OK |
| 3 Mechanical ventilation          |                            |                             |    |
| Continuous extract system         |                            |                             |    |
| Specific fan power:               |                            | 0.15                        |    |
| Maximum                           |                            | 0.7                         | OK |
| Summertime temperature            |                            |                             |    |
| Overheating risk (Thames valle    | y):                        | Medium                      | OK |
| ased on:                          |                            |                             |    |
| Overshading:                      |                            | Average or unknown          |    |
| Windows facing: South West        |                            | 8.1m²                       |    |
| Windows facing: South West        |                            | 6.41m²                      |    |
| Windows facing: North West        |                            | 6.1m²                       |    |
| Ventilation rate:                 |                            | 4.00                        |    |
| Blinds/curtains:                  |                            |                             |    |
|                                   |                            | Closed 100% of daylight hou | rs |
| 10 Key features                   |                            |                             |    |
| External Walls U-value            |                            | 0.13 W/m²K                  |    |
| Party Walls H-value               |                            | 0                           |    |

External Walls U-value 0.13 W/m²K
Party Walls U-value 0 W/m²K
Photovoltaic array

# **Code for Sustainable Homes Report For use with Nov 2010 addendum 2014 England**



#### **Assessor and House Details**

Assessor Name: Aymon Winter Assessor Number: STR0014511

Property Address: A-3-09

49-51 Beulah Hill

#### **Building regulation assessment**

**kg/m²/year** 17.89 12.95

DER
ENE 1 Assessment - Dwelling Emission Rate

#### Total Energy Type CO<sub>2</sub> Emissions for Codes Levels 1 - 5

|                                                                      | %    | kg/m²/year |       |
|----------------------------------------------------------------------|------|------------|-------|
| DER from SAP 2012 DER Worksheet                                      |      | 12.95      | (ZC1) |
| TER                                                                  |      | 17.89      |       |
| Residual CO2 emissions offset from biofuel CHP                       |      | 0          | (ZC5) |
| CO2 emissions offset from additional allowable electricty generation |      | 0          | (ZC7) |
| Total CO2 emissions offset from SAP Section 16 allowances            |      | 0          |       |
| DER accounting for SAP Section 16 allowances                         |      | 12.95      |       |
| % improvement DER/TER                                                | 27.6 |            |       |

#### **Total Energy Type CO2 Emissions for Codes Levels 6**

|                                               | kg/m²/year |       |
|-----------------------------------------------|------------|-------|
| DER accounting for SAP Section 16 allowances  | 12.95      | (ZC1) |
| CO2 emissions from appliances, equation (L14) | 16.96      | (ZC2) |
| CO2 emissions from cooking, equation (L16)    | 2.72       | (ZC3) |
| Net CO2 emissions                             | 36         | (ZC8) |

#### Result:

TER

Credits awarded for ENE 1 = 3.6

Code Level = 4

#### **ENE 2 - Fabric energy Efficiency**

Fabric energy Efficiency: 46.36 Credits awarded for ENE 2 = 3.5

#### **ENE 7 - Low or Zero Carbon (LZC) Technologies**

#### **Reduction in CO2 Emissions**

|                             | % | kg/m²/year |  |
|-----------------------------|---|------------|--|
| Standard Case CO2 emissions |   | 40.63      |  |
| Standard DER                |   | 20.96      |  |
| Actual Case CO2 emissions   |   | 34.36      |  |
| Actual DER                  |   | 14.69      |  |

Reduction in CO2 emissions 15.43

#### Credits awarded for ENE 7 = 2

Technologies eligible to contribute to achieving the requirements of this issue must produce energy from renewable sources and meet all other ancillary requirements as defined by Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.

The following requirements must also be met:

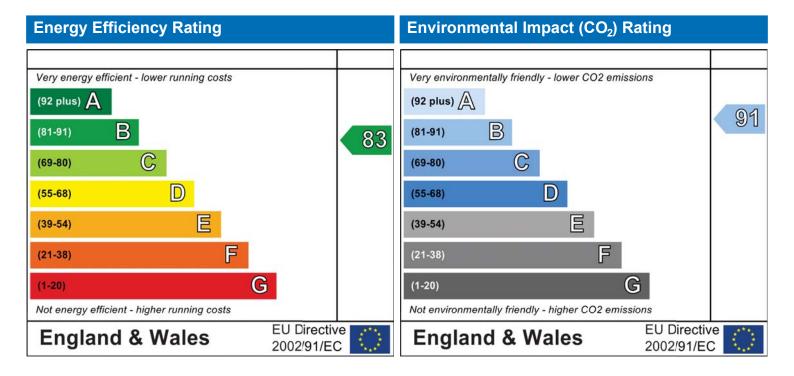
- Where not provided by accredited external renewables there must be a direct supply of energy produced to the dwelling under assessment.
- Where covered by the Microgeneration Certification Scheme (MCS), technologies under 50kWe or 300kWth must be certified.
- Combined Heat and Power (CHP) schemes above 50kWe must be certified under the CHPQA standard.
- All technologies must be accounted for by SAP.

CHP schemes fuelled by mains gas are eligible to contribute to performance against this issue. Where these schemes are above 50kWe they must be certified under the CHPQA.

It is the responsibly of the Accredited OCDEA and Code Assessor to ensure all technologies use in the calculation are appropriate before awarding credits.

### **Predicted Energy Assessment**




A-3-09 49-51 Beulah Hill

Sada Unit Ref: A3-A21

Dwelling type: Date of assessment: Produced by: Total floor area: Mid floor Flat 12 March 2019 Aymon Winter 61.7 m<sup>2</sup>

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.



The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

### **SAP Input**



#### Property Details: 01-19-73120 A-3-09 PL1

A-3-09, 49-51 Beulah Hill Address:

Located in: England Region: Thames valley

**UPRN:** 

12 March 2019 **Date of assessment:** 25 March 2019 **Date of certificate:** 

**Assessment type:** New dwelling design stage

**Transaction type:** New dwelling Tenure type: Unknown No related party **Related party disclosure: Thermal Mass Parameter:** Calculated 103.32 True

Water use <= 125 litres/person/day:

**PCDF Version:** 440

#### Property description:

Flat Dwelling type:

Detachment:

2019 Year Completed:

Floor Location: Floor area:

Storey height: 61.7 m<sup>2</sup> 2.56 m

Floor 0 26.05 m<sup>2</sup> (fraction 0.422) Living area:

North East Front of dwelling faces:

#### Opening types:

| Name:             | Source:      | Type:   | Glazing:                       | Argon: | Frame: |
|-------------------|--------------|---------|--------------------------------|--------|--------|
| Front Door        | Manufacturer | Solid   |                                |        | PVC-U  |
| Rear Elev         | SAP 2012     | Windows | low-E, $En = 0.05$ , soft coat | Yes    | Metal  |
| Rear Elev Balcony | SAP 2012     | Windows | low-E, $En = 0.05$ , soft coat | Yes    | Metal  |
| Side Elev         | SAP 2012     | Windows | low-E, $En = 0.05$ , soft coat | Yes    | Metal  |

| Name:             | Gap:         | Frame Fa | actor: g-value: | U-value: | Area: | No. of Openings: |
|-------------------|--------------|----------|-----------------|----------|-------|------------------|
| Front Door        | mm           | 0.7      | 0               | 1.4      | 2.12  | 1                |
| Rear Elev         | 16mm or more | 0.8      | 0.4             | 1.4      | 8.1   | 1                |
| Rear Elev Balcony | 16mm or more | 0.8      | 0.4             | 1.4      | 6.41  | 1                |
| Side Elev         | 16mm or more | 0.8      | 0.4             | 1.4      | 6.1   | 1                |

| Name:             | Type-Name: | Location:        | Orient:    | Width: | Height: |
|-------------------|------------|------------------|------------|--------|---------|
| Front Door        |            | Wall to Corridor | North East | 0      | 0       |
| Rear Elev         |            | External Wall    | South West | 0      | 0       |
| Rear Elev Balcony |            | External Wall    | South West | 2.68   | 2.39    |
| Side Elev         |            | External Wall    | North West | 0      | 0       |

Overshading: Average or unknown

#### Opaque Elements:

| Туре:                   | Gross area: | Openings: | Net area: | U-value: | Ru value: | <b>Curtain wall:</b> | Карра: |
|-------------------------|-------------|-----------|-----------|----------|-----------|----------------------|--------|
| <b>External Element</b> | <u>:S</u>   |           |           |          |           |                      |        |
| External Wall           | 60.77       | 20.61     | 40.16     | 0.13     | 0         | False                | 14     |
| Wall to Corridor        | 16.38       | 2.12      | 14.26     | 0.26     | 0.43      | False                | 14     |
| Internal Element        | <u>s</u>    |           |           |          |           |                      |        |
| Iw Stud                 | 116.48      |           |           |          |           |                      | 9      |
| Party Elements          |             |           |           |          |           |                      |        |
| Party Wall              | 12.29       |           |           |          |           |                      | 20     |
| Party Ceiling           | 61.7        |           |           |          |           |                      | 30     |

### **SAP Input**



Party Floor 61.7 40

| Thomas | bridges:  |
|--------|-----------|
|        | Drivings. |
|        |           |

Thermal bridges: User-defined (individual PSI-values) Y-Value = 0.1263

| Length | Psi-value |     |                                                              |
|--------|-----------|-----|--------------------------------------------------------------|
| 10     | 0.3       | E2  | Other lintels (including other steel lintels)                |
| 6.31   | 0.04      | E3  | Sill                                                         |
| 26.98  | 0.05      | E4  | Jamb                                                         |
| 60.28  | 0.07      | E7  | Party floor between dwellings (in blocks of flats)           |
| 10.24  | 0.09      | E16 | Corner (normal)                                              |
| 5.12   | -0.09     | E17 | Corner (inverted – internal area greater than external area) |
| 2.56   | 0.06      | E18 | Party wall between dwellings                                 |
| 2.56   | 0.12      | E25 | Staggered party wall between dwellings c                     |
| 9.6    | 0         | P3  | Intermediate floor between dwellings (in blocks of flats)    |

Ventilation:

Pressure test: Yes (As designed)

Ventilation: Centralised whole house extract

Number of wet rooms: Kitchen + 2

Ductwork: , rigid

Approved Installation Scheme: False

Number of chimneys: 0
Number of open flues: 0
Number of fans: 0
Number of passive stacks: 0
Number of sides sheltered: 2
Pressure test: 5

#### Main heating system:

Main heating system: Boiler systems with radiators or underfloor heating

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 440, product index 017558) Efficiency: Winter 86.7 % Summer: 90.0

Brand name: Worcester Model: Greenstar

Model qualifier: 34CDi Classic ErP

(Combi boiler)

Systems with radiators

Central heating pump: 2013 or later Design flow temperature: Unknown

Boiler interlock: Yes Delayed start

#### Main heating Control:

Main heating Control: Programmer, room thermostat and TRVs

Control code: 2106

#### Secondary heating system:

Secondary heating system: None

#### Water heating:

Water heating: From main heating system

Water code: 901 Fuel :mains gas No hot water cylinder Solar panel: False

#### Others:

Electricity tariff: Standard Tariff
In Smoke Control Area: Unknown

### **SAP Input**



Conservatory: No conservatory

Low energy lights: 100%

Terrain type: Low rise urban / suburban

EPC language: English Wind turbine: No

Photovoltaics: Photovoltaic 1

Installed Peak power: 0.98
Tilt of collector: Horizontal
Overshading: None or very little
Collector Orientation: South

Assess Zero Carbon Home: No



**User Details: Aymon Winter** STRO014511 Assessor Name: Stroma Number: Stroma FSAP 2012 **Software Version: Software Name:** Version: 1.0.4.16 Property Address: 01-19-73120 A-3-09 PL1 A-3-09, 49-51 Beulah Hill Address: 1. Overall dwelling dimensions: Av. Height(m) Area(m²) Volume(m³) Ground floor 61.7 (1a) x 2.56 (2a) =157.95 (3a) Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+....(1n)(4)61.7 Dwelling volume (3a)+(3b)+(3c)+(3d)+(3e)+....(3n) =157.95 (5)other total main secondary m³ per hour heating heating x 40 =Number of chimneys (6a) 0 0 x 20 =Number of open flues 0 0 0 0 0 (6b) Number of intermittent fans x 10 =(7a)0 0 x 10 =Number of passive vents (7b)0 0 x 40 =Number of flueless gas fires 0 (7c)Air changes per hour Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = $\div$  (5) = (8)If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) Number of storeys in the dwelling (ns) (9)0 Additional infiltration (10)[(9)-1]x0.1 =0 Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction (11)Λ if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 0 (12)If no draught lobby, enter 0.05, else enter 0 0 (13)Percentage of windows and doors draught stripped (14)0 Window infiltration  $0.25 - [0.2 \times (14) \div 100] =$ 0 (15)Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) =n (16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area (17)5 If based on air permeability value, then  $(18) = [(17) \div 20] + (8)$ , otherwise (18) = (16)0.25 (18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides sheltered (19)2  $(20) = 1 - [0.075 \times (19)] =$ Shelter factor (20)0.85  $(21) = (18) \times (20) =$ Infiltration rate incorporating shelter factor 0.21 (21)Infiltration rate modified for monthly wind speed Jan Feb Jul Sep Oct Mar Apr May Jun Aug Nov Dec Monthly average wind speed from Table 7 (22)m =4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7 Wind Factor (22a)m = (22)m ÷ 4

1.1

1.08

0.95

0.95

0.92

1

1.08

1.12

1.18

1.23

1.25

(22a)m

1.27



| Adjusted infiltration rate (allowing for shelter a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nd wind spe                                                                                                | eed) = (21a) x                                                                                        | (22a)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                         |                                                   |                                                         |                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------|
| 0.27 0.27 0.26 0.23 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2                                                                                                        | 0.2 0.2                                                                                               | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.23                                                                         | 0.24                                    | 0.25                                              | ]                                                       |                                                                     |
| Calculate effective air change rate for the app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | licable case                                                                                               | 9                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                            | •                                       | •                                                 |                                                         | ٦,,,,                                                               |
| If mechanical ventilation:  If exhaust air heat pump using Appendix N, (23b) = (23b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sa) x Emy (eq                                                                                              | uation (N5)) other                                                                                    | rwise (23h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ı) - (23a)                                                                   |                                         |                                                   | 0.5                                                     | (23a)                                                               |
| If balanced with heat recovery: efficiency in % allowing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , , , ,                                                                                                    | ` ''                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) – (23a)                                                                    |                                         |                                                   | 0.5                                                     | (23b)                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Oh)m ı (                                                                     | 22k) v [                                | 1 (22.5)                                          | 0                                                       | (23c)                                                               |
| a) If balanced mechanical ventilation with he (24a)m= 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eat recovery                                                                                               | $\frac{y(NVHR)(248)}{0}$                                                                              | $\frac{a)m = (2)}{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2b)m + (.                                                                    | 23b) × [                                | $\frac{1-(230)}{0}$                               | ) + 100]<br>]                                           | (24a)                                                               |
| b) If balanced mechanical ventilation withou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                              |                                         | "                                                 | J                                                       | (214)                                                               |
| (24b)m= 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                          | 0 0                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                            | 0                                       | 0                                                 | ]                                                       | (24b)                                                               |
| c) If whole house extract ventilation or posit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ive input ve                                                                                               | ntilation from                                                                                        | L<br>outside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              | ļ                                       |                                                   | J                                                       |                                                                     |
| if $(22b)m < 0.5 \times (23b)$ , then $(24c) = (23b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                          |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5 × (23b                                                                    | )                                       |                                                   |                                                         |                                                                     |
| (24c)m= 0.52 0.52 0.51 0.5 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5                                                                                                        | 0.5 0.5                                                                                               | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5                                                                          | 0.5                                     | 0.5                                               | ]                                                       | (24c)                                                               |
| d) If natural ventilation or whole house posit if (22b)m = 1, then (24d)m = (22b)m other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                          |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.51                                                                         | •                                       |                                                   | •                                                       |                                                                     |
| (24d)m= 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                          | 0 0                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01                                                                         | 0                                       | 0                                                 | ]                                                       | (24d)                                                               |
| Effective air change rate - enter (24a) or (24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lb) or (24c)                                                                                               | or (24d) in bo                                                                                        | x (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                         |                                                   | J                                                       |                                                                     |
| (25)m= 0.52 0.52 0.51 0.5 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5                                                                                                        | 0.5 0.5                                                                                               | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5                                                                          | 0.5                                     | 0.5                                               | ]                                                       | (25)                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | I                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                              |                                         |                                                   | J                                                       |                                                                     |
| 3. Heat losses and heat loss parameter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NIst Ass                                                                                                   |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A V I I                                                                      |                                         | le control                                        | - ^ ^                                                   | / l.                                                                |
| <b>ELEMENT</b> Gross Openings area (m²) m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Net Area<br>A ,m <sup>2</sup>                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A X U<br>(W/I                                                                |                                         | k-value<br>kJ/m²·                                 |                                                         |                                                                     |
| , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                            | _                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | `                                                                            |                                         |                                                   |                                                         |                                                                     |
| Doors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.12                                                                                                       | x 1.4                                                                                                 | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.968                                                                        |                                         |                                                   |                                                         | (26)                                                                |
| Doors Windows Type 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.12<br>8.1                                                                                                | X 1.4<br>X1/[1/( 1.4 )+                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.968                                                                        |                                         |                                                   |                                                         | (26)<br>(27)                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | =                                                                                                     | 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                                         |                                                   |                                                         | , ,                                                                 |
| Windows Type 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.1                                                                                                        | x1/[1/( 1.4 )+                                                                                        | - 0.04] =<br>- 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.74                                                                        |                                         |                                                   |                                                         | (27)                                                                |
| Windows Type 1<br>Windows Type 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.1<br>6.41                                                                                                | x1/[1/( 1.4 )+                                                                                        | - 0.04] =<br>- 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.74<br>8.5                                                                 |                                         | 14                                                | 562.24                                                  | (27)<br>(27)                                                        |
| Windows Type 1 Windows Type 2 Windows Type 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.1<br>6.41<br>6.1                                                                                         | x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+                                                    | - 0.04] =<br>- 0.04] =<br>- 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.74<br>8.5<br>8.09                                                         |                                         | 14                                                | 562.24<br>199.64                                        | (27)<br>(27)<br>(27)<br>(27)                                        |
| Windows Type 1 Windows Type 2 Windows Type 3 Walls Type1  60.77  20.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.1<br>6.41<br>6.1<br>40.16                                                                                | x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+                                  | - 0.04] =<br>- 0.04] =<br>- 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.74<br>8.5<br>8.09<br>5.22                                                 |                                         |                                                   |                                                         | (27)<br>(27)<br>(27)<br>(27)                                        |
| Windows Type 1 Windows Type 2 Windows Type 3 Walls Type1 60.77 20.61 Walls Type2 16.38 2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.1<br>6.41<br>6.1<br>40.16<br>14.26                                                                       | x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+                                  | - 0.04] =<br>- 0.04] =<br>- 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.74<br>8.5<br>8.09<br>5.22                                                 |                                         |                                                   |                                                         | (27)<br>(27)<br>(27)<br>(27)<br>(29)<br>(29)                        |
| Windows Type 1 Windows Type 2 Windows Type 3 Walls Type1 60.77 20.61 Walls Type2 16.38 2.12 Total area of elements, m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.1<br>6.41<br>6.1<br>40.16<br>14.26<br>77.15                                                              | x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x 0.13<br>x 0.23                                | - 0.04] =<br>- 0.04] =<br>- 0.04] =<br>= =<br>= =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.74<br>8.5<br>8.09<br>5.22<br>3.33                                         |                                         | 14                                                | 199.64                                                  | (27)<br>(27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(31)                |
| Windows Type 1 Windows Type 2 Windows Type 3 Walls Type1 60.77 20.61 Walls Type2 16.38 2.12 Total area of elements, m² Party wall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.1<br>6.41<br>6.1<br>40.16<br>14.26<br>77.15                                                              | x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x 0.13<br>x 0.23                                | - 0.04] =<br>- 0.04] =<br>- 0.04] =<br>= =<br>= =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.74<br>8.5<br>8.09<br>5.22<br>3.33                                         |                                         | 20                                                | 199.64                                                  | (27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(31)<br>(32)                |
| Windows Type 1 Windows Type 2 Windows Type 3 Walls Type1 60.77 20.61 Walls Type2 16.38 2.12 Total area of elements, m² Party wall Party floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.1<br>6.41<br>6.1<br>40.16<br>14.26<br>77.15<br>12.29<br>61.7                                             | x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x 0.13<br>x 0.23                                | - 0.04] =<br>- 0.04] =<br>- 0.04] =<br>= =<br>= =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.74<br>8.5<br>8.09<br>5.22<br>3.33                                         |                                         | 14<br>20<br>40                                    | 199.64<br>245.8<br>2468                                 | (27) (27) (27) (29) (29) (31) (32) (32a) (32b)                      |
| Windows Type 1 Windows Type 2 Windows Type 3 Walls Type1 60.77 20.61 Walls Type2 16.38 2.12 Total area of elements, m² Party wall Party floor Party ceiling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.1<br>6.41<br>6.1<br>40.16<br>14.26<br>77.15<br>12.29<br>61.7<br>61.7<br>116.48                           | x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x 0.13<br>x 0.23<br>x 0                         | - 0.04] =<br>- 0.04] =<br>- 0.04] =<br>=<br>=<br>= =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.74<br>8.5<br>8.09<br>5.22<br>3.33                                         | ] [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ | 14<br>20<br>40<br>30<br>9                         | 245.8<br>2468<br>1851<br>1048.32                        | (27) (27) (27) (29) (29) (31) (32) (32a) (32b)                      |
| Windows Type 1 Windows Type 2 Windows Type 3 Walls Type1 60.77 20.61 Walls Type2 16.38 2.12 Total area of elements, m² Party wall Party floor Party ceiling Internal wall ** * for windows and roof windows, use effective window U-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.1<br>6.41<br>6.1<br>40.16<br>14.26<br>77.15<br>12.29<br>61.7<br>61.7<br>116.48                           | x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x 0.13<br>x 0.23<br>x 0                         | - 0.04] =  <br>- 0.04] =  <br>- 0.04] =  <br>- 0.04] =  <br>=  <br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.74<br>8.5<br>8.09<br>5.22<br>3.33                                         | as given in                             | 14<br>20<br>40<br>30<br>9                         | 245.8<br>2468<br>1851<br>1048.32                        | (27) (27) (27) (29) (29) (31) (32) (32a) (32b)                      |
| Windows Type 1 Windows Type 2 Windows Type 3 Walls Type 1 60.77 20.61 Walls Type 2 16.38 2.12 Total area of elements, m² Party wall Party floor Party ceiling Internal wall **  * for windows and roof windows, use effective window U- ** include the areas on both sides of internal walls and page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.1<br>6.41<br>6.1<br>40.16<br>14.26<br>77.15<br>12.29<br>61.7<br>61.7<br>116.48                           | x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x 0.13<br>x 0.23<br>x 0.23                      | - 0.04] =  <br>- 0.04] =  <br>- 0.04] =  <br>- 0.04] =  <br>=  <br>=  <br>- 0.04] =  <br>=  <br>- 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.74<br>8.5<br>8.09<br>5.22<br>3.33                                         |                                         | 14<br>20<br>40<br>30<br>9                         | 199.64<br>245.8<br>2468<br>1851<br>1048.32              | (27) (27) (27) (29) (29) (31) (32) (32a) (32b) (32c)                |
| Windows Type 1 Windows Type 2 Windows Type 3 Walls Type 1 60.77 20.61 Walls Type 2 16.38 2.12 Total area of elements, m² Party wall Party floor Party ceiling Internal wall **  * for windows and roof windows, use effective window U- ** include the areas on both sides of internal walls and party that is a side of the content of the cont | 8.1 6.41 6.1 40.16 14.26 77.15 12.29 61.7 61.7 116.48 value calculate                                      | x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x 0.13<br>x 0.23<br>x 0.23                      | - 0.04] =  <br>- 0.04] =  <br>- 0.04] =  <br>- 0.04] =  <br>=  <br>- 0.04] =  <br>- 0.04] = | 10.74<br>8.5<br>8.09<br>5.22<br>3.33<br>0                                    |                                         | 14<br>20<br>40<br>30<br>9                         | 199.64  245.8  2468  1851  1048.32                      | (27) (27) (27) (29) (29) (31) (32) (32a) (32b) (32c)                |
| Windows Type 2 Windows Type 3 Walls Type 1 60.77 20.61 Walls Type 2 16.38 2.12 Total area of elements, m² Party wall Party floor Party ceiling Internal wall **  * for windows and roof windows, use effective window U- ** include the areas on both sides of internal walls and party capacity Cm = S(A x K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.1 6.41 6.1 40.16 14.26 77.15 12.29 61.7 61.7 116.48 avalue calculate artitions                           | x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x 0.13<br>x 0.23<br>x 0.23<br>x 0.23<br>(26)(30 | - 0.04] =  <br>- 0.04] =  <br>- 0.04] =  <br>- 0.04] =  <br>=  <br>- 0.04] =  <br>=  <br>=  <br>- 0.04] =  <br>=  <br>(/[(1/U-value)) + (32) =  <br>((28). = (34))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.74<br>8.5<br>8.09<br>5.22<br>3.33<br>0<br>0<br>(30) + (32)<br>(30) + (32) | 2) + (32a).                             | 14<br>20<br>40<br>30<br>9<br>paragraph<br>(32e) = | 199.64  245.8  2468  1851  1048.32  38.85  6375         | (27) (27) (27) (29) (29) (31) (32) (32a) (32b) (32c) (33) (34)      |
| Windows Type 2 Windows Type 3 Walls Type 1 Walls Type 2 Mindows Type 3 Walls Type 1 Malls Type 2 Mindows Type 3 Malls Type 2 Malls Mall | 8.1 6.41 6.1 40.16 14.26 77.15 12.29 61.7 61.7 116.48 value calculate artitions                            | x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x 0.13<br>x 0.23<br>x 0.23<br>x 0.23<br>(26)(30 | - 0.04] =  <br>- 0.04] =  <br>- 0.04] =  <br>- 0.04] =  <br>=  <br>- 0.04] =  <br>=  <br>=  <br>- 0.04] =  <br>=  <br>(/[(1/U-value)) + (32) =  <br>((28). = (34))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.74<br>8.5<br>8.09<br>5.22<br>3.33<br>0<br>0<br>(30) + (32)<br>(30) + (32) | 2) + (32a).                             | 14<br>20<br>40<br>30<br>9<br>paragraph<br>(32e) = | 199.64  245.8  2468  1851  1048.32  38.85  6375         | (27) (27) (27) (29) (29) (31) (32) (32a) (32b) (32c) (33) (34)      |
| Windows Type 2 Windows Type 3 Walls Type 1 60.77 20.61 Walls Type 2 16.38 2.12  Total area of elements, m² Party wall Party floor Party ceiling Internal wall **  * for windows and roof windows, use effective window U- ** include the areas on both sides of internal walls and party include the areas on both sides of internal walls and party include the areas on both sides of internal walls and party include the areas on both sides of internal walls and party include the areas on both sides of internal walls and party include the areas on both sides of internal walls and party include the areas on both sides of internal walls and party include the areas on both sides of internal walls and party include the areas on both sides of internal walls and party include the areas on both sides of internal walls and party includes the areas on both sides of internal walls and party includes the areas on both sides of internal walls and party includes the areas on both sides of internal walls and party includes the areas on both sides of internal walls and party includes the areas on both sides of internal walls and party includes the areas on both sides of internal walls and party includes the areas on both sides of internal walls and party includes the areas on both sides of internal walls and party includes the areas on both sides of internal walls and party includes the areas on both sides of internal walls and party includes the areas on both sides of internal walls and party includes the areas on both sides of internal walls and party includes the areas on both sides of internal walls and party includes the areas on both sides of internal walls and party includes the areas on both sides of internal walls and party includes the areas on both sides of internal walls and party includes the areas on both sides of internal walls and party includes the areas on both sides of internal walls and party includes the areas on both sides of internal walls and party includes the areas on both sides of internal walls and party inclu | 8.1 6.41 6.1 40.16 14.26 77.15 12.29 61.7 61.7 116.48 value calculate artitions in kJ/m²K ction are not kn | x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x1/[1/( 1.4 )+<br>x 0.13<br>x 0.23<br>x 0.23<br>x 0.23<br>(26)(30 | - 0.04] =  <br>- 0.04] =  <br>- 0.04] =  <br>- 0.04] =  <br>=  <br>- 0.04] =  <br>=  <br>=  <br>- 0.04] =  <br>=  <br>(/[(1/U-value)) + (32) =  <br>((28). = (34))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.74<br>8.5<br>8.09<br>5.22<br>3.33<br>0<br>0<br>(30) + (32)<br>(30) + (32) | 2) + (32a).                             | 14<br>20<br>40<br>30<br>9<br>paragraph<br>(32e) = | 199.64  245.8  2468  1851  1048.32  38.85  6375  103.32 | (27) (27) (27) (29) (29) (31) (32) (32a) (32b) (32c) (33) (34) (35) |



| entilation h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eat loss ca                                                          | alculated                           | l monthly      | /              |             |              |                           | (38)m        | = 0.33 × (  | 25)m x (5)                    |          |        |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------|----------------|----------------|-------------|--------------|---------------------------|--------------|-------------|-------------------------------|----------|--------|----------------|
| Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb                                                                  | Mar                                 | Apr            | May            | Jun         | Jul          | Aug                       | Sep          | Oct         | Nov                           | Dec      |        |                |
| 8)m= 27.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26.88                                                                | 26.6                                | 26.06          | 26.06          | 26.06       | 26.06        | 26.06                     | 26.06        | 26.06       | 26.06                         | 26.06    |        | (3             |
| eat transfe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r coefficie                                                          | nt, W/K                             |                |                |             |              |                           | (39)m        | = (37) + (  | 38)m                          |          |        |                |
| 9)m= 75.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75.47                                                                | 75.19                               | 74.65          | 74.65          | 74.65       | 74.65        | 74.65                     | 74.65        | 74.65       | 74.65                         | 74.65    |        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      | II D) \\(\(\lambda\)                | /21 <i>/</i>   |                |             |              | •                         |              | _           | Sum(39) <sub>1</sub> .        | 12 /12=  | 74.86  | (3             |
| eat loss pa<br>0)m= 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.22                                                                 | 1.22                                |                | 1.21           | 1 21        | 1.21         | 1.21                      | (40)m        | = (39)m ÷   | ı ´                           | 1 21     |        |                |
| 0)m= 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.22                                                                 | 1.22                                | 1.21           | 1.21           | 1.21        | 1.21         | 1.21                      |              | 1.21        | 1.21<br>Sum(40) <sub>1.</sub> | 1.21     | 1.21   | (4             |
| umber of d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ays in mo                                                            | nth (Tab                            | le 1a)         |                |             |              |                           | ,            | - Average   | Sum(40) <sub>1.</sub>         | 12 / 12- | 1.21   | (-             |
| Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb                                                                  | Mar                                 | Apr            | May            | Jun         | Jul          | Aug                       | Sep          | Oct         | Nov                           | Dec      |        |                |
| 1)m= 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28                                                                   | 31                                  | 30             | 31             | 30          | 31           | 31                        | 30           | 31          | 30                            | 31       |        | (4             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                    |                                     |                |                |             |              | •                         |              |             | •                             |          |        |                |
| . Water he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ating ene                                                            | rgy requi                           | irement:       |                |             |              |                           |              |             |                               | kWh/ye   | ar:    |                |
| sumed oc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cupancy,                                                             | N                                   |                |                |             |              |                           |              |             | 2                             | 03       |        | (4             |
| if TFA > 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.9, N = 1                                                           |                                     | [1 - exp       | (-0.0003       | 849 x (TF   | FA -13.9     | )2)] + 0.0                | 0013 x (     | ΓFA -13.    |                               |          |        | `              |
| if TFA £ 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                    | ator upoc                           | ao in litra    | o por de       | \/d a       | orogo =      | (25 v NI)                 | . 26         |             |                               |          |        | ,              |
| nnual avera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |                                     |                |                |             |              |                           |              | se target o |                               | 2.4      |        | (              |
| t more that 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25 litres per                                                        | person per                          | day (all w     | ater use, l    | hot and co  | ld)          |                           |              |             |                               |          |        |                |
| Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb                                                                  | Mar                                 | Apr            | May            | Jun         | Jul          | Aug                       | Sep          | Oct         | Nov                           | Dec      |        |                |
| t water usage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e in litres pe                                                       | day for ea                          | ach month      | Vd,m = fa      | ctor from   | Table 1c x   | (43)                      |              |             | •                             |          |        |                |
| 4)m= 90.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87.34                                                                | 84.04                               | 80.75          | 77.45          | 74.16       | 74.16        | 77.45                     | 80.75        | 84.04       | 87.34                         | 90.63    |        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                     |                |                |             | _            |                           |              |             | m(44) <sub>112</sub> =        | L        | 988.74 | (-             |
| ergy content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of hot water                                                         | used - cal                          | culated mo     | onthly = $4$ . | 190 x Vd,r  | n x nm x E   | OTm / 3600                | kWh/mor      | ith (see Ta | ables 1b, 1                   | c, 1d)   |        |                |
| 5)m= 134.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 117.55                                                             | 121.31                              | 105.76         | 101.48         | 87.57       | 81.14        | 93.11                     | 94.23        | 109.81      | 119.87                        | 130.17   |        | _              |
| nstantaneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | water heati                                                          | na at point                         | of use (no     | hot water      | r storage). | enter 0 in   | boxes (46                 |              | Γotal = Su  | m(45) <sub>112</sub> =        | · [      | 1296.4 | (              |
| 6)m= 20.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      | 18.2                                | 15.86          | 15.22          | 13.14       | 12.17        | 13.97                     | 14.13        | 16.47       | 17.98                         | 19.53    |        | (              |
| ater storag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      | 10.2                                | 15.00          | 10.22          | 13.14       | 12.17        | 13.97                     | 14.13        | 10.47       | 17.90                         | 19.55    |        | (              |
| orage volu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | me (litres)                                                          | includin                            | ig any so      | olar or W      | /WHRS       | storage      | within sa                 | ame ves      | sel         |                               | 0        |        | (-             |
| community                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | heating a                                                            | ınd no ta                           | nk in dw       | elling, e      | nter 110    | litres in    | (47)                      |              |             |                               |          |        |                |
| herwise if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | no stored                                                            | hot wate                            | er (this in    | ıcludes i      | nstantar    | neous co     | mbi boil                  | ers) ente    | er '0' in ( | 47)                           |          |        |                |
| ater storag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |                                     |                |                |             |              |                           |              |             |                               |          |        |                |
| ) If manufa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |                                     |                | or is kno      | wn (kVVI    | n/day):      |                           |              |             |                               | 0        |        | (              |
| mperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |                                     |                |                |             |              |                           |              |             |                               | 0        |        | (              |
| eray lost f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rom water                                                            | _                                   | -              |                | or io not   |              | (48) x (49)               | ) =          |             |                               | 0        |        | (              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                     | •              |                |             |              |                           |              |             |                               | 0        |        | (              |
| ) If manufa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | orage loss                                                           |                                     |                | (              | , 5, 40     | · <i>J</i> / |                           |              |             |                               | <u> </u> |        | (              |
| ) If manufa<br>ot water sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                    | ee secti                            | on 4.3         |                |             |              |                           |              |             |                               |          |        |                |
| If manufa<br>ot water sto<br>community                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | heating s                                                            |                                     | on 4.3         |                |             |              |                           |              |             |                               | 0        |        | (              |
| ) If manufa<br>ot water sto<br>community<br>olume facto<br>emperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | heating s<br>or from Ta                                              | ble 2a                              |                |                |             |              |                           |              |             |                               | 0        |        | •              |
| ) If manufa<br>ot water sto<br>community<br>olume facto<br>emperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | heating sor from Ta                                                  | ble 2a<br>m Table                   | 2b             | ear            |             |              | (47) x (51)               | x (52) x (   | 53) =       |                               |          |        | (              |
| of the state of th | r heating sor from Ta<br>e factor from<br>from water                 | ble 2a<br>m Table<br>· storage      | 2b             | ear            |             |              | (47) x (51)               | ) x (52) x ( | 53) =       |                               | 0        |        | (              |
| ) If manufa<br>ot water sto<br>community<br>olume facto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r heating sor from Ta<br>e factor from<br>from water<br>r (54) in (5 | ble 2a<br>m Table<br>storage<br>55) | 2b<br>, kWh/ye |                |             |              | (47) x (51)<br>((56)m = ( |              |             |                               | 0        |        | (;<br>(;<br>(; |



| If cylinde | er contains                    | s dedicate  | d solar sto | rage, (57)          | m = (56)m | x [(50) – (                                  | H11)] ÷ (5  | 0), else (5   | 7)m = (56)     | m where (   | H11) is fro | m Append    | ix H          |      |
|------------|--------------------------------|-------------|-------------|---------------------|-----------|----------------------------------------------|-------------|---------------|----------------|-------------|-------------|-------------|---------------|------|
| (57)m=     | 0                              | 0           | 0           | 0                   | 0         | 0                                            | 0           | 0             | 0              | 0           | 0           | 0           |               | (57) |
| Primar     | v circuit                      | loss (ar    | nual) fro   | om Table            | <br>e 3   | -                                            | -           | -             | -              | -           |             | 0           |               | (58) |
|            | -                              | •           | culated t   |                     |           | 59)m = (                                     | (58) ÷ 36   | 65 × (41)     | m              |             |             |             | •             |      |
| (mo        | dified by                      | factor f    | rom Tab     | le H5 if t          | here is s | solar wat                                    | ter heatii  | ng and a      | cylinde        | r thermo    | stat)       |             |               |      |
| (59)m=     | 0                              | 0           | 0           | 0                   | 0         | 0                                            | 0           | 0             | 0              | 0           | 0           | 0           |               | (59) |
| Combi      | loss ca                        | culated     | for each    | month (             | (61)m =   | (60) ÷ 36                                    | 65 × (41    | )m            |                |             |             |             |               |      |
| (61)m=     | 35.72                          | 32.23       | 35.64       | 34.44               | 35.55     | 34.36                                        | 35.48       | 35.53         | 34.41          | 35.61       | 34.52       | 35.7        |               | (61) |
| Total h    | neat requ                      | uired for   | water he    | eating ca           | alculated | for eac                                      | h month     | (62)m =       | 0.85 × (       | (45)m +     | (46)m +     | (57)m +     | (59)m + (61)m |      |
| (62)m=     | 170.13                         | 149.79      | 156.95      | 140.2               | 137.03    | 121.93                                       | 116.63      | 128.64        | 128.63         | 145.42      | 154.38      | 165.87      |               | (62) |
| Solar Di   | -IW input o                    | calculated  | using App   | endix G oı          | Appendix  | H (negati                                    | ve quantity | /) (enter '0  | ' if no sola   | r contribut | ion to wate | er heating) | •             |      |
| (add a     | dditiona                       | l lines if  | FGHRS       | and/or \            | WWHRS     | applies                                      | , see Ap    | pendix (      | ∋)             |             |             |             |               |      |
| (63)m=     | 0                              | 0           | 0           | 0                   | 0         | 0                                            | 0           | 0             | 0              | 0           | 0           | 0           |               | (63) |
| Output     | from w                         | ater hea    | ter         | -                   | -         | -                                            | -           | -             | -              | -           |             | -           | •             |      |
| (64)m=     | 170.13                         | 149.79      | 156.95      | 140.2               | 137.03    | 121.93                                       | 116.63      | 128.64        | 128.63         | 145.42      | 154.38      | 165.87      |               |      |
|            |                                |             |             | •                   | •         | •                                            | •           | Outp          | out from wa    | ater heate  | r (annual)₁ | 12          | 1715.6        | (64) |
| Heat g     | ains fro                       | n water     | heating,    | kWh/m               | onth 0.2  | 5 ′ [0.85                                    | × (45)m     | + (61)m       | n] + 0.8 x     | ([(46)m     | + (57)m     | + (59)m     | ]             |      |
| (65)m=     | 53.62                          | 47.15       | 49.24       | 43.77               | 42.63     | 37.71                                        | 35.85       | 39.84         | 39.93          | 45.41       | 48.48       | 52.21       |               | (65) |
| inclu      | ıde (57)ı                      | m in cal    | culation o  | of (65)m            | only if o | ylinder i                                    | s in the    | dwelling      | or hot w       | ater is fr  | om com      | munity h    | eating        |      |
|            | . ,                            |             | e Table 5   | . ,                 |           | •                                            |             |               |                |             |             | •           |               |      |
|            | Ĭ                              | `           | e 5), Wat   |                     | /         |                                              |             |               |                |             |             |             |               |      |
| Motab      | Jan                            | Feb         | Mar         | Apr                 | May       | Jun                                          | Jul         | Aug           | Sep            | Oct         | Nov         | Dec         |               |      |
| (66)m=     | 121.76                         | 121.76      | 121.76      | 121.76              | 121.76    | 121.76                                       | 121.76      | 121.76        | 121.76         | 121.76      | 121.76      | 121.76      |               | (66) |
| Liahtin    | u gains                        | (calcula    | ted in Ap   | ppendix             | L. eguat  | ion L9 o                                     | r L9a). a   | lso see       | Table 5        |             |             |             | l             |      |
| (67)m=     | 39.5                           | 35.08       | 28.53       | 21.6                | 16.15     | 13.63                                        | 14.73       | 19.14         | 25.7           | 32.63       | 38.08       | 40.59       |               | (67) |
|            |                                |             | ulated in   | <u> </u>            |           | <u>.                                    </u> | 13 or I 1   | L<br>3a) also |                | L<br>ble 5  |             | !           |               |      |
| (68)m=     | 264.5                          | 267.24      | 260.33      | 245.6               | 227.01    | 209.55                                       | 197.88      | 195.13        | 202.05         | 216.77      | 235.36      | 252.83      |               | (68) |
|            |                                |             | ited in A   | <u> </u>            | <u> </u>  |                                              |             |               | <u> </u>       |             |             |             |               | , ,  |
| (69)m=     | 49.2                           | 49.2        | 49.2        | 49.2                | 49.2      | 49.2                                         | 49.2        | 49.2          | 49.2           | 49.2        | 49.2        | 49.2        | 1             | (69) |
| , ,        |                                |             |             |                     | 40.2      | 70.2                                         | 70.2        | 40.2          | 40.2           | 40.2        | 40.2        | 40.2        |               | (00) |
| (70)m=     | 3                              | is gains    | (Table 5    | 3 3                 | 3         | 3                                            | 3           | 3             | 3              | 3           | 3           | 3           |               | (70) |
|            |                                |             | n (negat    |                     |           |                                              |             |               |                |             |             |             |               | ,    |
| (71)m=     | -81.17                         | -81.17      | -81.17      | -81.17              | -81.17    | -81.17                                       | -81.17      | -81.17        | -81.17         | -81.17      | -81.17      | -81.17      |               | (71) |
| , ,        |                                |             |             | 01.17               | 01.17     | 01.17                                        | 01.17       | 01.17         | 01.17          | 01.17       | 01.17       | 01.17       |               | ()   |
|            | heating                        | 70.16       | 66.19       | 60.8                | 57.2      | 52.27                                        | 48.19       | 52.55         | 55.46          | 61.04       | 67.24       | 70.17       | I             | (72) |
| (72)m=     | 72.07                          |             |             | 00.0                | 57.3      | 52.37                                        |             | 53.55         |                |             | 67.34       | 70.17       |               | (12) |
|            | nternal                        |             |             | 400.70              | 000.05    | · · · · ·                                    | . ,         |               | + (69)m + (    | , ,         | , , ,       |             | ı             | (70) |
| (73)m=     | 468.85                         | 465.27      | 447.83      | 420.79              | 393.25    | 368.34                                       | 353.58      | 360.62        | 375.99         | 403.23      | 433.57      | 456.38      |               | (73) |
|            | lar gains                      |             |             |                     | T 11 0    |                                              | iotod og::- | tions to se   | unicant to the | o applicat  | do orient-t | ion         |               |      |
|            | raine are a                    | - Stollario | Heina colo  | r fliiv fram        |           |                                              |             |               |                |             |             |             |               |      |
|            | gains are o<br>ation: <i>A</i> |             | •           | r flux from<br>Area |           | and assoc<br>Flu                             |             | tions to co   | g_             | е аррисак   | FF          | IOH.        | Gains         |      |

Table 6b

Table 6c

Table 6a

m²

Table 6d

(W)



| Southwest <sub>0.9x</sub> 0.77 | х         | 8.1              | х    | 3      | 6.79    | ]     | 0.4          | X     | 8.0      | =      | 66.09    | (79)  |
|--------------------------------|-----------|------------------|------|--------|---------|-------|--------------|-------|----------|--------|----------|-------|
| Southwest <sub>0.9x</sub> 0.77 | х         | 6.41             | х    | 3      | 6.79    | ]     | 0.4          | х     | 0.8      | =      | 52.3     | (79)  |
| Southwest <sub>0.9x</sub> 0.77 | х         | 8.1              | х    | 6      | 2.67    | ]     | 0.4          | х     | 0.8      | =      | 112.58   | (79)  |
| Southwest <sub>0.9x</sub> 0.77 | x         | 6.41             | х    | 6      | 2.67    | ]     | 0.4          | х     | 0.8      | =      | 89.09    | (79)  |
| Southwest <sub>0.9x</sub> 0.77 | х         | 8.1              | х    | 8      | 5.75    | ]     | 0.4          | х     | 0.8      | =      | 154.03   | (79)  |
| Southwest <sub>0.9x</sub> 0.77 | x         | 6.41             | х    | 8      | 5.75    | ]     | 0.4          | х     | 0.8      | =      | 121.9    | (79)  |
| Southwest <sub>0.9x</sub> 0.77 | x         | 8.1              | х    | 1      | 06.25   | ]     | 0.4          | X     | 0.8      | =      | 190.86   | (79)  |
| Southwest <sub>0.9x</sub> 0.77 | x         | 6.41             | х    | 1      | 06.25   | ]     | 0.4          | х     | 0.8      | =      | 151.03   | (79)  |
| Southwest <sub>0.9x</sub> 0.77 | ×         | 8.1              | х    | 1      | 19.01   | ĺ     | 0.4          | x     | 0.8      | =      | 213.77   | (79)  |
| Southwest <sub>0.9x</sub> 0.77 | x         | 6.41             | х    | 1      | 19.01   | ]     | 0.4          | X     | 0.8      | =      | 169.17   | (79)  |
| Southwest <sub>0.9x</sub> 0.77 | ×         | 8.1              | х    | 1      | 18.15   | Ì     | 0.4          | x     | 0.8      | =      | 212.23   | (79)  |
| Southwest <sub>0.9x</sub> 0.77 | ×         | 6.41             | х    | 1      | 18.15   | ĺ     | 0.4          | x     | 0.8      | =      | 167.95   | (79)  |
| Southwest <sub>0.9x</sub> 0.77 | x         | 8.1              | х    | 1      | 13.91   | j     | 0.4          | x     | 0.8      | =      | 204.61   | (79)  |
| Southwest <sub>0.9x</sub> 0.77 | ×         | 6.41             | х    | 1      | 13.91   | j     | 0.4          | x     | 0.8      | =      | 161.92   | (79)  |
| Southwest <sub>0.9x</sub> 0.77 | x         | 8.1              | х    | 1      | 04.39   | ĺ     | 0.4          | x     | 0.8      | =      | 187.51   | (79)  |
| Southwest <sub>0.9x</sub> 0.77 | x         | 6.41             | х    | 1      | 04.39   | j     | 0.4          | x     | 0.8      | =      | 148.39   | (79)  |
| Southwest <sub>0.9x</sub> 0.77 | ×         | 8.1              | х    | 9      | 2.85    | j     | 0.4          | x     | 0.8      | =      | 166.79   | (79)  |
| Southwest <sub>0.9x</sub> 0.77 | ×         | 6.41             | х    | 9      | 2.85    | ĺ     | 0.4          | x     | 0.8      | =      | 131.99   | (79)  |
| Southwest <sub>0.9x</sub> 0.77 | x         | 8.1              | х    | 6      | 9.27    | j     | 0.4          | x     | 0.8      | =      | 124.42   | (79)  |
| Southwest <sub>0.9x</sub> 0.77 | x         | 6.41             | х    | 6      | 9.27    | j     | 0.4          | x     | 0.8      | =      | 98.46    | (79)  |
| Southwest <sub>0.9x</sub> 0.77 | x         | 8.1              | х    | 4      | 4.07    | ĺ     | 0.4          | x     | 0.8      | =      | 79.16    | (79)  |
| Southwest <sub>0.9x</sub> 0.77 | ×         | 6.41             | х    | 4      | 4.07    | ĺ     | 0.4          | x     | 0.8      | =      | 62.65    | (79)  |
| Southwest <sub>0.9x</sub> 0.77 | x         | 8.1              | х    | 3      | 1.49    | j     | 0.4          | x     | 0.8      | =      | 56.56    | (79)  |
| Southwest <sub>0.9x</sub> 0.77 | x         | 6.41             | х    | 3      | 1.49    | ĺ     | 0.4          | x     | 0.8      | =      | 44.76    | (79)  |
| Northwest 0.9x 0.77            | x         | 6.1              | х    | 1      | 1.28    | х     | 0.4          | x     | 0.8      | =      | 15.26    | (81)  |
| Northwest <sub>0.9x</sub> 0.77 | ×         | 6.1              | х    | 2      | 2.97    | х     | 0.4          | x     | 0.8      | =      | 31.07    | (81)  |
| Northwest <sub>0.9x</sub> 0.77 | x         | 6.1              | х    | 4      | 1.38    | х     | 0.4          | X     | 0.8      | =      | 55.97    | (81)  |
| Northwest <sub>0.9x</sub> 0.77 | ×         | 6.1              | х    | 6      | 7.96    | х     | 0.4          | x     | 0.8      | =      | 91.93    | (81)  |
| Northwest <sub>0.9x</sub> 0.77 | x         | 6.1              | х    | 9      | 1.35    | х     | 0.4          | х     | 0.8      | =      | 123.57   | (81)  |
| Northwest <sub>0.9x</sub> 0.77 | x         | 6.1              | х    | 9      | 7.38    | х     | 0.4          | X     | 0.8      | =      | 131.74   | (81)  |
| Northwest <sub>0.9x</sub> 0.77 | ×         | 6.1              | х    | 9      | 91.1    | х     | 0.4          | x     | 0.8      | =      | 123.24   | (81)  |
| Northwest <sub>0.9x</sub> 0.77 | ×         | 6.1              | х    | 7      | 2.63    | х     | 0.4          | x     | 0.8      | =      | 98.25    | (81)  |
| Northwest 0.9x 0.77            | x         | 6.1              | х    | 5      | 0.42    | х     | 0.4          | X     | 0.8      | =      | 68.21    | (81)  |
| Northwest <sub>0.9x</sub> 0.77 | ×         | 6.1              | х    | 2      | 8.07    | х     | 0.4          | x     | 0.8      | =      | 37.97    | (81)  |
| Northwest <sub>0.9x</sub> 0.77 | x         | 6.1              | х    |        | 14.2    | х     | 0.4          | X     | 0.8      | =      | 19.2     | (81)  |
| Northwest 0.9x 0.77            | x         | 6.1              | х    | 9      | 9.21    | х     | 0.4          | X     | 0.8      | =      | 12.46    | (81)  |
|                                |           |                  |      |        |         | -     |              |       |          |        |          |       |
| Solar gains in watts, cal      | culated   | for each mon     | th   |        |         | (83)m | n = Sum(74)m | (82)m | _        |        | 1        |       |
| (83)m= 133.66 232.73           | 331.9     | 433.82 506.5     |      | 511.91 | 489.77  | 434   | .15 366.98   | 260.8 | 5 161.01 | 113.78 |          | (83)  |
| Total gains – internal ar      |           | <del> </del>     | _    | • •    |         |       |              |       |          |        | 1        | /O.1: |
| (84)m= 602.51 698              | 779.74    | 854.6 899.7      | 6 6  | 880.25 | 843.35  | 794   | .76 742.97   | 664.0 | 594.58   | 570.17 | <u> </u> | (84)  |
| 7. Mean internal tempe         |           | ,                |      |        |         |       |              |       |          |        |          |       |
| Temperature during he          | •         |                  | _    |        |         | ole 9 | , Th1 (°C)   |       |          |        | 21       | (85)  |
| Utilisation factor for ga      | ins for l | living area, h1, | m (s | see Ta | ble 9a) |       |              |       |          |        |          |       |

Sep

Aug

Oct

Nov

Dec

Stroma FSAF 2012 VERB 11.0.496 (SAF 8.52) - http://www.stloma



| (86)m=                                                                        | 0.92      | 0.88       | 0.83       | 0.74       | 0.62      | 0.49        | 0.37      | 0.4             | 0.58                          | 0.77         | 0.88         | 0.92                    |         | (86)  |
|-------------------------------------------------------------------------------|-----------|------------|------------|------------|-----------|-------------|-----------|-----------------|-------------------------------|--------------|--------------|-------------------------|---------|-------|
| Mean                                                                          | internal  | temper     | ature in   | living are | ea T1 (fo | ollow ste   | ps 3 to 7 | in Tabl         | e 9c)                         | -            | -            |                         | •       |       |
| (87)m=                                                                        | 19.03     | 19.34      | 19.77      | 20.25      | 20.63     | 20.86       | 20.95     | 20.93           | 20.77                         | 20.27        | 19.57        | 18.98                   |         | (87)  |
| Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) |           |            |            |            |           |             |           |                 | •                             |              |              |                         |         |       |
| (88)m=                                                                        | 19.9      | 19.9       | 19.91      | 19.91      | 19.91     | 19.91       | 19.91     | 19.91           | 19.91                         | 19.91        | 19.91        | 19.91                   |         | (88)  |
| Litilie                                                                       | tion for  | tor for a  | oine for   | rest of d  | volling   | h2 m /sc    | o Tabla   | 00)             |                               |              |              |                         |         |       |
| (89)m=                                                                        | 0.9       | 0.86       | 0.8        | 0.71       | 0.57      | 0.42        | 0.28      | 0.32            | 0.51                          | 0.74         | 0.86         | 0.91                    |         | (89)  |
| , ,                                                                           |           |            |            |            |           |             |           |                 | <u> </u>                      |              |              |                         |         | ,     |
| (90)m=                                                                        | 18.14     | 18.44      | 18.85      | 19.31      | of dwelli | ng 12 (fo   | 19.89     | 19.88           | 7 in Tabl<br><sub>19.77</sub> | 19.34        | 18.68        | 18.1                    |         | (90)  |
| (90)111–                                                                      | 10.14     | 10.44      | 10.00      | 19.51      | 19.04     | 19.03       | 19.09     | 19.00           |                               |              | g area ÷ (4  |                         | 0.40    | _     |
|                                                                               |           |            |            |            |           |             |           |                 | '                             | ILA - LIVIII | g area · (·  | +) -                    | 0.42    | (91)  |
| Mean                                                                          |           | temper     | ature (fo  | r the wh   | ole dwe   | lling) = fl | LA × T1   | + (1 – fL       | A) × T2                       |              |              |                         |         |       |
| (92)m=                                                                        | 18.51     | 18.82      | 19.24      | 19.7       | 20.06     | 20.26       | 20.34     | 20.33           | 20.19                         | 19.73        | 19.06        | 18.47                   |         | (92)  |
| Apply                                                                         | adjustn   | nent to tl | ne mean    | interna    | temper    | ature fro   | m Table   | 4e, whe         | ere appro                     | opriate      |              |                         | •       |       |
| (93)m=                                                                        | 18.36     | 18.67      | 19.09      | 19.55      | 19.91     | 20.11       | 20.19     | 20.18           | 20.04                         | 19.58        | 18.91        | 18.32                   |         | (93)  |
| 8. Sp                                                                         | ace hea   | ting requ  | uirement   |            |           |             |           |                 |                               |              |              |                         |         |       |
|                                                                               |           |            |            | •          |           | ed at ste   | ep 11 of  | Table 9l        | b, so tha                     | t Ti,m=(     | 76)m an      | d re-calc               | culate  |       |
| the ut                                                                        | ilisation |            |            | using Ta   |           | _           | 1         | 1 -             | I _                           | I -          | I            |                         | 1       |       |
|                                                                               | Jan       | Feb        | Mar        | Apr        | May       | Jun         | Jul       | Aug             | Sep                           | Oct          | Nov          | Dec                     |         |       |
|                                                                               |           |            | ains, hm   |            |           |             |           |                 | I                             |              |              |                         | I       | (0.4) |
| (94)m=                                                                        | 0.88      | 0.84       | 0.79       | 0.69       | 0.57      | 0.43        | 0.31      | 0.34            | 0.52                          | 0.72         | 0.84         | 0.89                    |         | (94)  |
|                                                                               |           |            | <u> </u>   | 4)m x (84  |           |             |           |                 | T                             |              | l            |                         | l       | (05)  |
| (95)m=                                                                        | 532.37    | 589        | 612.54     | 593.42     | 515.72    | 378.68      | 258.23    | 269.13          | 387.35                        | 480.99       | 501.93       | 509.91                  |         | (95)  |
|                                                                               |           |            |            | perature   |           |             |           |                 |                               |              | I            |                         | 1       | (00)  |
| (96)m=                                                                        | 4.3       | 4.9        | 6.5        | 8.9        | 11.7      | 14.6        | 16.6      | 16.4            | 14.1                          | 10.6         | 7.1          | 4.2                     |         | (96)  |
|                                                                               |           |            |            |            |           |             | -` /      | <del>-` ´</del> | – (96)m                       | <del>-</del> |              | I                       | ]       | (07)  |
| (97)m=                                                                        | 1065.13   | 1039       | 946.39     | 795.26     | 612.71    | 411.65      | 267.85    | 281.99          | 443.29                        | 670.59       | 881.46       | 1054.02                 |         | (97)  |
| -                                                                             |           |            |            |            |           |             |           |                 | )m – (95                      | <del></del>  |              | 101.00                  | l       |       |
| (98)m=                                                                        | 396.38    | 302.4      | 248.38     | 145.33     | 72.16     | 0           | 0         | 0               | 0                             | 141.07       | 273.26       | 404.82                  |         | ٦     |
|                                                                               |           |            |            |            |           |             |           | Tota            | l per year                    | (kWh/yeaı    | ·) = Sum(9   | 18) <sub>15,912</sub> = | 1983.79 | (98)  |
| Space                                                                         | e heating | g require  | ement in   | kWh/m²     | /year     |             |           |                 |                               |              |              |                         | 32.15   | (99)  |
| 9a. En                                                                        | ergy reg  | uiremer    | ıts – Indi | ividual h  | eating s  | ystems i    | ncluding  | micro-C         | CHP)                          |              |              |                         |         |       |
|                                                                               | e heatin  |            |            |            |           |             |           |                 | ,                             |              |              |                         |         |       |
| •                                                                             |           | _          | t from s   | econdar    | y/supple  | mentary     | system    |                 |                               |              |              |                         | 0       | (201) |
| Fracti                                                                        | on of sp  | ace hea    | t from m   | nain syst  | em(s)     |             |           | (202) = 1 -     | - (201) =                     |              |              |                         | 1       | (202) |
| Fracti                                                                        | on of to  | al heatii  | ng from    | main sys   | stem 1    |             |           | (204) = (2      | 02) × [1 –                    | (203)] =     |              |                         | 1       | (204) |
|                                                                               |           |            | •          | ing syste  |           |             |           |                 |                               |              |              |                         | 90      | (206) |
|                                                                               |           |            |            | ementar    |           | n evetem    | n %       |                 |                               |              |              |                         | 0       | (208) |
| Lilloid                                                                       |           |            |            |            |           |             |           | I -             | I _                           | I -          | I            |                         |         | _     |
| _                                                                             | Jan       | Feb .      | Mar        | Apr        | May       | Jun         | Jul       | Aug             | Sep                           | Oct          | Nov          | Dec                     | kWh/ye  | ar    |
| Space                                                                         |           |            | <u> </u>   | alculate   |           |             |           |                 |                               |              | 0=0 = 0      | 40                      | 1       |       |
|                                                                               | 396.38    | 302.4      | 248.38     | 145.33     | 72.16     | 0           | 0         | 0               | 0                             | 141.07       | 273.26       | 404.82                  |         |       |
| (211)m                                                                        | = {[(98]  |            |            | 00 ÷ (20   |           |             |           |                 |                               |              |              |                         | ı       | (211) |
|                                                                               | 440.42    | 336        | 275.98     | 161.47     | 80.18     | 0           | 0         | 0               | 0                             | 156.74       | 303.63       | 449.79                  |         | _     |
|                                                                               |           |            |            |            |           |             |           | Tota            | l (kWh/yea                    | ar) =Sum(2   | 211),15,1012 | =                       | 2204.22 | (211) |



| Space heating fuel (secondary), kV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vh/month                                    |                                                           |                                                          |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|
| $= \{[(98)\text{m x } (201)] \} \text{ x } 100 \div (208)$ $(215)\text{m} = 0  0  0  0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                           | 0                                                         | 0                                                        | 0          | 0          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                         |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                           |                                                          | Tota       | l (kWh/yea | ar) =Sum(2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 215) <sub>15,1012</sub>                                   | <br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                         | (215)                                                                |
| Water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             |                                                           |                                                          |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                      |
| Output from water heater (calculated 170.13   149.79   156.95   140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             | 121.93                                                    | 116.63                                                   | 128.64     | 128.63     | 145.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 154.38                                                    | 165.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                         |                                                                      |
| Efficiency of water heater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.00                                      | 121.00                                                    | 110.00                                                   | 120.04     | 120.00     | 140.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 104.00                                                    | 100.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86.7                                                                      | (216)                                                                |
| (217)m= 88.98 88.88 88.69 88.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 87.81                                     | 86.7                                                      | 86.7                                                     | 86.7       | 86.7       | 88.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88.78                                                     | 89.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                           | (217)                                                                |
| Fuel for water heating, kWh/month (219)m = (64)m x 100 ÷ (217)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                           | •                                                         | •                                                        | •          | •          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                         |                                                                      |
| (219)m= 191.19 168.53 176.96 158.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 69 156.05                                   | 140.64                                                    | 134.52                                                   | 148.38     | 148.37     | 164.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 173.89                                                    | 186.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                           |                                                          | Tota       | ıl = Sum(2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1948.25                                                                   | (219)                                                                |
| Annual totals Space heating fuel used, main systematics  Space heati | em 1                                        |                                                           |                                                          |            |            | k'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wh/yeaı                                                   | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2204.22                                                                   | 기                                                                    |
| Water heating fuel used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |                                                           |                                                          |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1948.25                                                                   | =                                                                    |
| Electricity for pumps, fans and elect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ric keen-ho                                 | t                                                         |                                                          |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1540.25                                                                   |                                                                      |
| mechanical ventilation - balanced,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                           |                                                           | nput fron                                                | n outside  | е          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | 40.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                         | (230a)                                                               |
| central heating pump:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·                                           |                                                           |                                                          |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ]                                                                         | (230c)                                                               |
| boiler with a fan-assisted flue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                           |                                                          |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ]                                                                         | (230e)                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                           |                                                          |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (231)                                                                     |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                           |                                                          |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ` ′                                                                       |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                           |                                                          |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 279 01                                                                    | (232)                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                           |                                                          |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 279.01                                                                    | (232)                                                                |
| Electricity for lighting  Electricity generated by PVs  10a. Fuel costs - individual heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | systems:                                    |                                                           |                                                          |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 279.01<br>-745.28                                                         | (232)                                                                |
| Electricity generated by PVs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | systems:                                    | Fu                                                        |                                                          |            |            | Fuel P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -745.28                                                                   | =                                                                    |
| Electricity generated by PVs  10a. Fuel costs - individual heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | systems:                                    | kW                                                        | /h/year                                                  |            |            | (Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12)                                                       | x 0.01 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -745.28  Fuel Cost £/year                                                 | (233)                                                                |
| Electricity generated by PVs  10a. Fuel costs - individual heating  Space heating - main system 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | systems:                                    | kW<br>(21                                                 | /h/year                                                  |            |            | (Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12)                                                       | x 0.01 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -745.28 <b>Fuel Cost</b> £/year  76.71                                    | (233)                                                                |
| Electricity generated by PVs  10a. Fuel costs - individual heating  Space heating - main system 1  Space heating - main system 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | systems:                                    | kW<br>(21:                                                | /h/year<br>1) x<br>3) x                                  |            |            | (Table 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12)                                                       | x 0.01 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -745.28  Fuel Cost £/year  76.71                                          | (240)                                                                |
| Electricity generated by PVs  10a. Fuel costs - individual heating  Space heating - main system 1  Space heating - main system 2  Space heating - secondary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | systems:                                    | (21:                                                      | /h/year<br>1) x<br>3) x<br>5) x                          |            |            | (Table 3.4 0 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12)                                                       | x 0.01 =<br>x 0.01 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -745.28  Fuel Cost £/year  76.71  0 0                                     | (240)<br>(241)<br>(242)                                              |
| Electricity generated by PVs  10a. Fuel costs - individual heating  Space heating - main system 1  Space heating - main system 2  Space heating - secondary  Water heating cost (other fuel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | systems:                                    | (21:<br>(21:<br>(21:                                      | /h/year  1) x  3) x  5) x                                |            |            | (Table 3.4 0 13. 3.4 13. 13. 13. 13. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12)                                                       | x 0.01 =<br>x 0.01 =<br>x 0.01 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -745.28  Fuel Cost £/year  76.71  0  0  67.8                              | (240)<br>(241)<br>(242)<br>(247)                                     |
| Electricity generated by PVs  10a. Fuel costs - individual heating  Space heating - main system 1  Space heating - main system 2  Space heating - secondary  Water heating cost (other fuel)  Pumps, fans and electric keep-hot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | (21:<br>(21:<br>(21:<br>(21:<br>(23:                      | /h/year  1) x  3) x  5) x  9)                            | licable a  | nd apply   | (Table 3.4 0 13. 13. 13. 13. 13. 13. 13. 13. 13. 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12)<br>88<br>19<br>88<br>19                               | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -745.28  Fuel Cost £/year  76.71  0  0  67.8  15.23                       | (240)<br>(241)<br>(242)                                              |
| Electricity generated by PVs  10a. Fuel costs - individual heating  Space heating - main system 1  Space heating - main system 2  Space heating - secondary  Water heating cost (other fuel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             | (21:<br>(21:<br>(21:<br>(21:<br>(23:                      | /h/year  1) x  3) x  5) x  9)  1)  y as app              | licable a  | nd apply   | (Table 3.4 0 13. 13. 13. 13. 13. 13. 13. 13. 13. 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12) 88 19 18 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -745.28  Fuel Cost £/year  76.71  0  0  67.8  15.23                       | (240)<br>(241)<br>(242)<br>(247)                                     |
| Electricity generated by PVs  10a. Fuel costs - individual heating  Space heating - main system 1  Space heating - main system 2  Space heating - secondary  Water heating cost (other fuel)  Pumps, fans and electric keep-hot  (if off-peak tariff, list each of (230a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to (230g) s                                 | kW<br>(21)<br>(21)<br>(21)<br>(23)<br>eparately           | /h/year  1) x  3) x  5) x  9)  1)  y as app              | licable a  | nd apply   | (Table 3.4 0 13. 13. 13. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12) 88 19 18 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10 | x = 0.01 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0 | -745.28  Fuel Cost £/year  76.71  0  67.8  15.23  Table 12a               | (240)<br>(241)<br>(242)<br>(247)<br>(249)                            |
| Electricity generated by PVs  10a. Fuel costs - individual heating  Space heating - main system 1  Space heating - main system 2  Space heating - secondary  Water heating cost (other fuel)  Pumps, fans and electric keep-hot  (if off-peak tariff, list each of (230a) in Energy for lighting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | to (230g) s                                 | (21)<br>(21)<br>(21)<br>(21)<br>(23)<br>eparately<br>(23) | /h/year  1) x  3) x  5) x  9)  1)  y as app              |            | nd apply   | (Table 3.4 0 13. 13. 13. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12) 18 19 18 19 19 10 10 11 11 11 11 11 11 11 11 11 11 11 | x = 0.01 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0.001 = 0 | -745.28  Fuel Cost £/year  76.71  0  67.8  15.23  Table 12a  36.8         | (240)<br>(241)<br>(242)<br>(247)<br>(249)<br>(250)                   |
| Electricity generated by PVs  10a. Fuel costs - individual heating  Space heating - main system 1  Space heating - main system 2  Space heating - secondary  Water heating cost (other fuel)  Pumps, fans and electric keep-hot  (if off-peak tariff, list each of (230a) in the cost of t | to (230g) si<br>12)<br>) and (254)          | (21:<br>(21:<br>(21:<br>(23:<br>eparately<br>(23:<br>one  | /h/year  1) x  3) x  5) x  9)  1)  y as app  of (233) to | o (235) x) | nd apply   | (Table  3.4  0  13.  3.4  13.  / fuel pridical in the second seco | 12) 18 19 18 19 19 10 10 11 11 11 11 11 11 11 11 11 11 11 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>rding to<br>x 0.01 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -745.28  Fuel Cost £/year  76.71  0  67.8  15.23  Table 12a  36.8  120  0 | (240)<br>(241)<br>(242)<br>(247)<br>(249)<br>(250)<br>(251)<br>(252) |
| Electricity generated by PVs  10a. Fuel costs - individual heating  Space heating - main system 1  Space heating - main system 2  Space heating - secondary  Water heating cost (other fuel)  Pumps, fans and electric keep-hot  (if off-peak tariff, list each of (230a) finergy for lighting  Additional standing charges (Table of Appendix Q items: repeat lines (253)  Total energy cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | to (230g) so<br>12)<br>) and (254)<br>(245) | (21)<br>(21)<br>(21)<br>(23)<br>eparately<br>(23)         | /h/year  1) x  3) x  5) x  9)  1)  y as app  of (233) to | o (235) x) | nd apply   | (Table  3.4  0  13.  3.4  13.  / fuel pridical in the state of the sta | 12) 18 19 18 19 19 10 10 11 11 11 11 11 11 11 11 11 11 11 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>rding to<br>x 0.01 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -745.28  Fuel Cost £/year  76.71  0  67.8  15.23  Table 12a  36.8  120    | (240)<br>(241)<br>(242)<br>(247)<br>(249)<br>(250)<br>(251)          |
| Electricity generated by PVs  10a. Fuel costs - individual heating  Space heating - main system 1  Space heating - main system 2  Space heating - secondary  Water heating cost (other fuel)  Pumps, fans and electric keep-hot  (if off-peak tariff, list each of (230a) in Energy for lighting  Additional standing charges (Table in Appendix Q items: repeat lines (253)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | to (230g) so<br>12)<br>) and (254)<br>(245) | (21:<br>(21:<br>(21:<br>(23:<br>eparately<br>(23:<br>one  | /h/year  1) x  3) x  5) x  9)  1)  y as app  of (233) to | o (235) x) | nd apply   | (Table  3.4  0  13.  3.4  13.  / fuel pridical in the state of the sta | 12) 18 19 18 19 19 10 10 11 11 11 11 11 11 11 11 11 11 11 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>rding to<br>x 0.01 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -745.28  Fuel Cost £/year  76.71  0  67.8  15.23  Table 12a  36.8  120  0 | (240)<br>(241)<br>(242)<br>(247)<br>(249)<br>(250)<br>(251)<br>(252) |



Energy cost factor (ECF)  $[(255) \times (256)] \div [(4) + 45.0] =$  1.25 (257) SAP rating (Section 12) 82.62 (258)

|                                                   | <b>Energy</b><br>kWh/year       | Emission factor<br>kg CO2/kWh | <b>Emissions</b><br>kg CO2/year |
|---------------------------------------------------|---------------------------------|-------------------------------|---------------------------------|
| Space heating (main system 1)                     | (211) x                         | 0.216 =                       | 476.11 (261)                    |
| Space heating (secondary)                         | (215) x                         | 0.519 =                       | 0 (263                          |
| Water heating                                     | (219) x                         | 0.216 =                       | 420.82 (264)                    |
| Space and water heating                           | (261) + (262) + (263) + (264) = | =                             | 896.93 (265)                    |
| Electricity for pumps, fans and electric keep-hot | (231) x                         | 0.519 =                       | 59.93 (267)                     |
| Electricity for lighting                          | (232) x                         | 0.519 =                       | 144.81 (268)                    |
| Energy saving/generation technologies Item 1      |                                 | 0.519 =                       | -386.8 (269                     |
| Total CO2, kg/year                                | SL                              | ım of (265)(271) =            | 714.86 (272)                    |
| CO2 emissions per m²                              | (2                              | 72) ÷ (4) =                   | 11.59 (273)                     |
| El rating (section 14)                            |                                 |                               | 91 (274)                        |
| 13a. Primary Energy                               |                                 |                               |                                 |
|                                                   | <b>Energy</b><br>kWh/vear       | <b>Primary</b> factor         | <b>P. Energy</b><br>kWh/vear    |

|                                                   | <b>Energy</b><br>kWh/year       | <b>Primary</b> factor | <b>P. Energy</b><br>kWh/year |
|---------------------------------------------------|---------------------------------|-----------------------|------------------------------|
| Space heating (main system 1)                     | (211) x                         | 1.22 =                | 2689.14 (261)                |
| Space heating (secondary)                         | (215) x                         | 3.07                  | 0 (263)                      |
| Energy for water heating                          | (219) x                         | 1.22 =                | 2376.86 (264)                |
| Space and water heating                           | (261) + (262) + (263) + (264) = |                       | 5066 (265)                   |
| Electricity for pumps, fans and electric keep-hot | (231) x                         | 3.07                  | 354.48 (267)                 |
| Electricity for lighting                          | (232) x                         | 0 =                   | 856.56 (268)                 |
| Energy saving/generation technologies             |                                 |                       |                              |
| Item 1                                            |                                 | 3.07                  | -2288.02 (269)               |
| 'Total Primary Energy                             | sum                             | of (265)(271) =       | 3989.03 (272)                |
| Primary energy kWh/m²/year                        | (272)                           | ) ÷ (4) =             | 64.65 (273)                  |

### **SAP 2012 Overheating Assessment**



Calculated by Stroma FSAP 2012 program, produced and printed on 25 March 2019

#### Property Details: 01-19-73120 A-3-09 PL1

Dwelling type:FlatLocated in:EnglandRegion:Thames valley

Cross ventilation possible: No Number of storeys: 1

Front of dwelling faces: North East

Overshading: Average or unknown

Overhangs: None

Thermal mass parameter: Calculated 103.32

Night ventilation: False

Blinds, curtains, shutters:

Ventilation rate during hot weather (ach): 4 ( Windows fully open)

Overheating Details:

Summer ventilation heat loss coefficient: 208.5 (P1)

Transmission heat loss coefficient: 48.6

Summer heat loss coefficient: 257,09 (P2)

Overhangs:

Orientation: Ratio: Z\_overhangs:

South West (Rear Elev) 0 1
South West (Rear Elev Balcophy) 0.53
North West (Side Elev) 0 1

#### Solar shading:

| Orientation:           | Z blinds: | Solar access: | Overhangs: | Z summer: |      |
|------------------------|-----------|---------------|------------|-----------|------|
| South West (Rear Elev) | 1         | 0.9           | 1          | 0.9       | (P8) |
| South West (Rear Elev  | Ballcony) | 0.9           | 0.53       | 0.43      | (P8) |
| North West (Side Elev) | 1         | 0.9           | 1          | 0.9       | (P8) |

#### Solar gains:

| Orientation                     | Area | Flux   | <b>g_</b> | FF  | Shading | Gains                 |
|---------------------------------|------|--------|-----------|-----|---------|-----------------------|
| South West (Rear Elev) 0.9 x    | 8.1  | 119.92 | 0.4       | 0.8 | 0.9     | 251.78                |
| South West (Rear Elev Balconxy) | 6.41 | 119.92 | 0.4       | 0.8 | 0.43    | 95.48                 |
| North West (Side Elev) 0.9 x    | 6.1  | 98.85  | 0.4       | 0.8 | 0.9     | 156.29                |
|                                 |      |        |           |     | Total   | 503.55 <b>(P3/P4)</b> |

#### Internal gains:

|                                                  | June   | July   | August             |
|--------------------------------------------------|--------|--------|--------------------|
| Internal gains                                   | 365.34 | 350.58 | 357.62             |
| Total summer gains                               | 898.6  | 854.13 | 809.43 <b>(P5)</b> |
| Summer gain/loss ratio                           | 3.5    | 3.32   | 3.15 <b>(P6)</b>   |
| Mean summer external temperature (Thames valley) | 16     | 17.9   | 17.8               |
| Thermal mass temperature increment               | 1.28   | 1.28   | 1.28               |
| Threshold temperature                            | 20.77  | 22.5   | 22.23 <b>(P7)</b>  |
| Likelihood of high internal temperature          | Slight | Medium | Medium             |

Assessment of likelihood of high internal temperature: Medium